Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design.

نویسندگان

  • C A Voigt
  • D B Gordon
  • S L Mayo
چکیده

Finding the minimum energy amino acid side-chain conformation is a fundamental problem in both homology modeling and protein design. To address this issue, numerous computational algorithms have been proposed. However, there have been few quantitative comparisons between methods and there is very little general understanding of the types of problems that are appropriate for each algorithm. Here, we study four common search techniques: Monte Carlo (MC) and Monte Carlo plus quench (MCQ); genetic algorithms (GA); self-consistent mean field (SCMF); and dead-end elimination (DEE). Both SCMF and DEE are deterministic, and if DEE converges, it is guaranteed that its solution is the global minimum energy conformation (GMEC). This provides a means to compare the accuracy of SCMF and the stochastic methods. For the side-chain placement calculations, we find that DEE rapidly converges to the GMEC in all the test cases. The other algorithms converge on significantly incorrect solutions; the average fraction of incorrect rotamers for SCMF is 0.12, GA 0.09, and MCQ 0.05. For the protein design calculations, design positions are progressively added to the side-chain placement calculation until the time required for DEE diverges sharply. As the complexity of the problem increases, the accuracy of each method is determined so that the results can be extrapolated into the region where DEE is no longer tractable. We find that both SCMF and MCQ perform reasonably well on core calculations (fraction amino acids incorrect is SCMF 0.07, MCQ 0.04), but fail considerably on the boundary (SCMF 0.28, MCQ 0.32) and surface calculations (SCMF 0.37, MCQ 0.44).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A COMPARATIVE STUDY FOR THE OPTIMAL DESIGN OF STEEL STRUCTURES USING CSS AND ACSS ALGORITHMS

In this article, an Advanced Charged System Search (ACSS) algorithm is applied for the optimum design of steel structures. ACSS uses the idea of Opposition-based Learning and Levy flight to enhance the optimization abilities of the standard CSS. It also utilizes the information of the position of each charged particle in the subsequent search process to increase the convergence speed. The objec...

متن کامل

A heuristic approach for multi-stage sequence-dependent group scheduling problems

We present several heuristic algorithms based on tabu search for solving the multi-stage sequence-dependent group scheduling (SDGS) problem by considering minimization of makespan as the criterion. As the problem is recognized to be strongly NP-hard, several meta (tabu) search-based solution algorithms are developed to efficiently solve industry-size problem instances. Also, two different initi...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

GENETIC AND TABU SEARCH ALGORITHMS FOR THE SINGLE MACHINE SCHEDULING PROBLEM WITH SEQUENCE-DEPENDENT SET-UP TIMES AND DETERIORATING JOBS

 This paper introduces the effects of job deterioration and sequence dependent set- up time in a single machine scheduling problem. The considered optimization criterion is the minimization of the makespan (Cmax). For this purpose, after formulating the mathematical model, genetic and tabu search algorithms were developed for the problem. Since population diversity is a very important issue in ...

متن کامل

HYBRID PARTICLE SWARM OPTIMIZATION, GRID SEARCH METHOD AND UNIVARIATE METHOD TO OPTIMALLY DESIGN STEEL FRAME STRUCTURES

This paper combines particle swarm optimization, grid search method and univariate method as a general optimization approach for any type of problems emphasizing on optimum design of steel frame structures. The new algorithm is denoted as the GSU-PSO. This method attempts to decrease the search space and only searches the space near the optimum point. To achieve this aim, the whole search space...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 299 3  شماره 

صفحات  -

تاریخ انتشار 2000